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1 Introduction

Eternal inflation [1] refers to the near de Sitter (dS) regime deep into the phase of inflation in

which the quantum fluctuations in the energy density of the inflaton are large. In the usual

account of eternal inflation the quantum diffusion dynamics of the fluctuations is modeled as

stochastic effects around a classical slow roll background. Since the stochastic effects domi-

nate the classical slow roll it is argued eternal inflation produces universes that are typically

globally highly irregular, with exceedingly large or infinite constant density surfaces [2–5].

However this account is questionable, because the dynamics of eternal inflation wipes

out the separation into classical backgrounds and quantum fluctuations that is assumed.

A proper treatment of eternal inflation must be based on quantum cosmology. In this

paper we put forward a new quantum cosmological model of scalar field driven eternal

inflation by using gauge-gravity duality [6–8]. We define the Euclidean dual theory on

the threshold surface of eternal inflation, which therefore describes the transition from the

quantum realm of eternal inflation towards a classical universe, in line with the original

vision behind inflation [9]. The subsequent evolution is assumed to be classical.

A reliable theory of eternal inflation is important to sharpen the predictions of slow

roll inflation. This is because the physics of eternal inflation specifies initial conditions for

classical cosmology. In particular a quantum model of eternal inflation specifies a prior

over the so-called zero modes, or classical slow roll backgrounds, in the theory. This in

turn determines its predictions for the precise spectral properties of CMB fluctuations on

observable scales.

Our starting point remains the no-boundary quantum state of the universe [10]. This

gives the ground state and is heavily biased towards universes with a low amount of in-

flation [11]. However we do not observe the entire universe. Instead our observations are

limited to a small patch mostly along part of our past light cone. Probabilities for local ob-

servations in the no-boundary state are weighted by the volume of a surface Σf of constant

measured density, to account for the different possible locations of our past light cone [12].
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Figure 1. Two representations in the complex time-plane of the same no-boundary saddle point

associated with an inflationary universe. The saddle point action includes an integral over time τ

from the no-boundary origin or South Pole (SP) to its endpoint υ on Σf . Different contours for

this give different geometric representations of the saddle point, each giving the same amplitude

for the final real configuration (hij(~x), φ(~x)) on Σf . The interior saddle point geometry along the

nearly vertical contour going upwards from the SP consists of a regular, Euclidean, locally AdS

domain wall with a complex scalar profile. Its regularized action specifies the tree-level probability

in the no-boundary state of the associated inflationary, asymptotically de Sitter history. Euclidean

AdS/CFT relates this to the partition function of a dual field theory yielding (1.1).

This transforms the probability distribution for the amount of inflation and leads to the

prediction that our universe emerged from a regime of eternal inflation [12, 13]. Thus we

must understand eternal inflation in order to understand the observational implications of

the no-boundary wave function.

However the standard saddle point approximation of the no-boundary wave func-

tion breaks down in eternal inflation. We therefore turn to gauge-gravity duality or

dS/CFT [6–8], which gives an alternative form of the wave function evaluated on a sur-

face Σf in the large three-volume limit. In this, the wave function is specified in terms of

the partition function of certain deformations of a Euclidean CFT defined directly on Σf .

Euclidean AdS/CFT generalized to complex relevant deformations implies an approximate

realisation of dS/CFT [14–19]. This follows from the observation [18] that all no-boundary

saddle points in low energy gravity theories with a positive scalar potential V admit a

geometric representation in which their weighting is fully specified by an interior, locally

AdS, domain wall region governed by an effective negative scalar potential −V . We illus-

trate this in figure 1. Quantum cosmology thus lends support to the view that Euclidean

AdS/CFT and dS/CFT are two real domains of a single complexified theory [6, 14, 20–23].

In the large three-volume limit this has led to the following proposal for a holographic form

of the semiclassical no-boundary wave function [18] in Einstein gravity,

ΨNB[hij , φ] = Z−1QFT [h̃ij , α̃] exp(iSst[hij , φ]/~) . (1.1)

Here the sources (h̃ij , α̃) are conformally related to the argument (hij , φ) of the wave

function, Sst are the usual surface terms, and ZQFT in this form of dS/CFT are partition

functions of (complex) deformations of Euclidean AdS/CFT duals. The boundary metric

h̃ij stands for background and fluctuations.

– 2 –
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The holographic form (1.1) has led to a fruitful and promising application of holo-

graphic techniques to early universe cosmology (see e.g. [15, 24–28]). No field theories have

been identified that correspond to top-down models of realistic cosmologies where inflation

transitions to a decelerating phase. However we find that many of the known AdS/CFT

duals are ideally suited to study eternal inflation from a holographic viewpoint. This is

because supergravity theories in AdS4 typically contain scalars of mass m2 = −2l2AdS with

a negative potential for large φ. In the context of (1.1) such scalars give rise to (slow roll)

eternal inflation in the dS domain of the theory that is governed effectively by −V . In

fact the Breitenlohner-Freedman bound in AdS corresponds precisely to the condition for

eternal inflation in dS.

Here we use (1.1) to study eternal inflation holographically in toy-model cosmologies

of this kind in which a single bulk scalar drives slow roll eternal inflation. We take the

dual to be defined on a global constant density surface Σf at the threshold (or exit) of the

regime of scalar field driven eternal inflation. The bulk scalar driving inflation corresponds

to a source α̃ that turns on a low dimension scalar operator in the dual. Hence we use

holography to excise the bulk regime of eternal inflation and replace this by field theory

degrees of freedom on a kind of ‘end-of-the-world’ brane. This is somewhat analogous to

the holographic description of vacuum decay in AdS [29], although the interpretation here

is different.

Conventional wisdom based on semiclassical gravity asserts that surfaces of constant

scalar field in eternal inflation typically become highly irregular on the largest scales, de-

veloping a configuration of bubble-like regions with locally negative curvature. Holography

provides a new perspective on this: the dependence of the partition function on the confor-

mal geometry hij of Σf in the presence of a constant source α̃ 6= 0 specifies a holographic

measure on the global structure of constant density surfaces in eternal inflation. We analyse

various properties of this measure and find that the amplitude of surfaces with conformal

structures far from the round one is exponentially small, in contrast with expectations

based on semiclassical gravity. We also argue on general grounds that the amplitude is

zero for all highly deformed conformal boundaries with a negative Yamabe invariant. This

raises doubt about the widespread idea that eternal inflation produces a highly irregular

universe with a mosaic structure of bubble like patches separated by inflationary domains.

2 A holographic measure on eternal inflation

2.1 Setup

For definiteness we start with the well known consistent truncation of M-theory on AdS4×
S7 down to Einstein gravity coupled to a single scalar φ with potential

V (φ) = −2− cosh(
√

2φ) , (2.1)

in units where Λ = −3 and hence l2AdS = 1. The scalar has mass m2 = −2. Therefore in

the large three-volume regime it behaves as

φ(~x, r) = α(~x)e−r + β(~x)e−2r + · · · (2.2)

– 3 –
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where r is the overall radial coordinate in Euclidean AdS, with scale factor er. The

Fefferman-Graham expansion implies that in terms of the variable r the asymptotically

(Lorentzian) dS domain of the theory is to be found along the vertical line τ = r + iπ/2

in the complex τ -plane [18]. This is illustrated in figure 1 where r changes from real to

imaginary values along the horizontal branch of the AdS contour from xA to xTP . This

also means that in the dS domain the original potential (2.1) acts as a positive effective

potential

Ṽ (φ) = −V = 2 + cosh(
√

2φ) . (2.3)

This is a potential for which the conditions for inflation and eternal inflation ε ≤ Ṽ hold,

where ε ≡ Ṽ 2
,φ/Ṽ

2, for a reasonably broad range of field values around its minimum. This

close connection between AdS supergravity truncations and eternal inflation in the frame-

work of the no-boundary wave function (1.1) stems from the fact that the Breitenlohner-

Freedman stability bound on the mass of scalars in AdS corresponds precisely to the con-

dition for eternal inflation in the de Sitter domain of the theory.

Bulk solutions with φ � 1 initially are at all times dominated by the cosmological

constant Λ and eternally inflate in a trivial manner. By contrast, solutions with φ ≥ 1 ini-

tially have a regime of scalar field driven eternal inflation, which eventually transitions into

a Λ-dominated phase. The wave function (1.1) contains both classes of histories. We are

mostly interested in the latter class and in particular in the amplitude of different (confor-

mal) shapes of the constant scalar field transition surface1 Σf between these two regimes.

The variance of the semiclassical wave function of inhomogeneous fluctuation modes in

the bulk is of order ∼ Ṽ /ε, evaluated at horizon crossing. In eternal inflation ε ≤ Ṽ . Hence

the fluctuation wave function spreads out and becomes broadly distributed [5]. This is a

manifestation of the fact that the universe’s evolution, according to semiclassical gravity,

is governed by the quantum diffusion dynamics of the fluctuations and their backreaction

on the geometry rather than the classical slow roll [2–5]. It is usually argued that the

typical individual histories described by this wave function develop highly irregular constant

density surfaces with a configuration of bubble-like regions with locally negative curvature.

Below we revisit this from a holographic viewpoint.

We conclude this discussion of our setup with a few technical remarks. The argument

(hij , φ) of the wave function evaluated at υ in figure 1 is real. This means that in saddle

points associated with inflationary universes, the scalar field must become real along the

vertical dS line in the τ -plane. The expansion (2.2) shows this requires its leading coeffi-

cient α to be imaginary, which in turn means that the scalar profile is complex along the

entire interior AdS domain wall part of the saddle points. But the bulk scalar sources a

deformation by an operator O of dimension one with coupling α in the dual ABJM theory.

Hence the holographic measure in this model involves the AdS dual partition function on

deformed three-spheres in the presence of an imaginary mass deformation α ≡ iα̃. We

are primarily interested in the probability distribution over h̃ij for sufficiently large defor-

1A realistic cosmology of course involves an intermediate radiation and matter dominated phase before

the cosmological constant takes over. However since we are concerned with the structure of the universe at

the exit from scalar field eternal inflation this toy-model setup suffices.

– 4 –
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mations α, since these correspond to histories with a scalar field driven regime of eternal

inflation. Finally whilst we formally define our dual on the exit surface Σf from scalar

field eternal inflation, at υ in figure 1, we might as well take υ →∞ because the classical,

asymptotic Λ-phase amounts to an overall volume rescaling of the boundary surface which

preserves the relative probabilities of different conformal bopundary geometries [18].

2.2 Local measure: perturbations around S3

We first recall the general behavior of partition functions for small perturbations away

from the round S3. Locally around the round sphere, the F-theorem and its extension to

spin-2 deformations provide a general argument that the round sphere is a local minimum

of the partition function. The F-theorem for three-dimensional CFTs [30, 31] states that

the free energy of a CFT on S3 decreases along an RG flow triggered by a relevant de-

formation. A similar result was recently proved for metric perturbations of the conformal

S3 background [32, 33]. The coupling of the energy-momentum tensor of the CFT to the

curved background metric triggers a spin-2 deformation. The fact that the free energy

is a local maximum for the round sphere is essentially equivalent to the positive definite-

ness of the stress tensor two-point function. Applied to the holographic no-boundary wave

function (1.1) these results imply that the pure de Sitter history in the bulk is a local

maximum of the holographic probability distribution, in contrast with expectations based

on semiclassical bulk gravity in eternal inflation.

2.3 Global measure: squashed three-spheres

We now turn to large deformations. The dual of our bulk model is the ABJM SCFT.

Hence to evaluate (1.1) we are faced with the problem of evaluating the partition function of

supersymmetry breaking deformations of this theory. We do not attempt this here. Instead

we first focus on a simplified model of this setup where we consider an O(N) vector model.

This is conjectured to be dual to higher-spin Vassiliev gravity in four dimensions [34].

Higher-spin theories are very different from Einstein gravity. However, ample evidence

indicates that the behavior of the free energy of vector models qualitatively captures that of

duals to Einstein gravity when one restricts to scalar, vector or spin 2 deformations [35–37].

This includes a remarkable qualitative agreement of the relation between the vev and the

source for the particular scalar potential (2.1) [38]. We therefore view these vector models

in this section as dual toy models of eternal inflation and proceed to evaluate their partition

functions for a specific class of large deformations. We return to Einstein gravity and a

general argument in support of our conjecture below in section 2.4.

Specifically we consider the O(N) vector model on squashed deformations of the

three-sphere,

ds2 =
r20
4

(
(σ1)

2 +
1

1 +A
(σ2)

2 +
1

1 +B
(σ3)

2

)
, (2.4)

where r0 is an overall scale and σi, with i = 1, 2, 3, are the left-invariant one-forms of SU(2).

Note that the Ricci scalar R(A,B) < 0 for large squashings [36]. We further turn on a mass

deformation O with coupling α. This is a relevant deformation which in our dual O(N)

vector toy model induces a flow from the free to the critical O(N) model. The coefficient
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α is imaginary in the dS domain of the wave function as discussed above. Hence we are led

to evaluate the partition function, or free energy, of the critical O(N) model as a function

of the squashing parameters A and B and an imaginary mass deformation α ≡ m̃2. The

key question of interest is whether or not the resulting holographic measure (1.1) favors

large deformations as semiclassical gravity would lead one to believe.

The deformed critical O(N) model is obtained from a double trace deformation

f(φ · φ)2/(2N) of the free model with an additional source ρfm̃2 turned on for the single

trace operator O ≡ (φ · φ). By taking f → ∞ the theory flows from its unstable UV

fixed point, where the source has dimension one, to its critical fixed point with a source of

dimension two [34]. To see this we write the mass deformed free model partition function as

Zfree[m
2] =

∫
Dφe−Ifree+

∫
d3x
√
gm2O(x) , (2.5)

where Ifree is the action of the free O(N) model

Ifree =
1

2

∫
d3x
√
g

(
∂µφa∂

µφa +
1

8
Rφaφ

a

)
. (2.6)

Here φa is an N -component field transforming as a vector under O(N) rotations and R

is the Ricci scalar of the squashed boundary geometry. Introducing an auxiliary variable

m̃2 = m2

ρf + O
ρ yields

Zfree[m
2] =

∫
DφDm̃2e

−Ifree+N
∫
d3x
√
g
[
ρfm̃2O− f

2
O2− 1

2f
(m2−ρfm̃2)2

]
, (2.7)

which can be written as

Zfree[m
2] =

∫
Dm̃2e

− N
2f

∫
d3x
√
g(m2−ρfm̃2)2

Zcrit[m̃
2] , (2.8)

with

Zcrit[m̃
2] =

∫
Dφe−Ifree+N

∫
d3x
√
g[ρfm̃2O− f

2
O2] . (2.9)

Inverting (2.8) gives Zcrit as a function of Zfree:

Zcrit[m̃
2] = e

Nfρ2

2

∫
d3x
√
gm̃4

∫
Dm2e

N
∫
d3x
√
g
(
m4

2f
−ρm̃2m2

)
Zfree[m

2] . (2.10)

The value of ρ can be determined by comparing two point functions in the bulk with those

in the boundary theory [37]. For the O(N) model this implies ρ = 1, which agrees with

the transformation from critical to free in [39].

We compute Zcrit for a single squashing A 6= 0 and m̃2 6= 0 by first calculating the

partition function of the free mass deformed O(N) vector model on a squashed sphere and

then evaluate (2.10) in a large N saddle point approximation.2 Evaluating the Gaussian

integral in (2.5) amounts to computing the following determinant

− logZfree = F =
N

2
log

(
det

[
−∇2 +m2 + R

8

Λ2

])
, (2.11)

2The generalization to double squashings A,B 6= 0 yields qualitatively similar results but requires

extensive numerical work and is discussed in [38].
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Figure 2. The real and imaginary parts of the solutions m2 of the saddle point equation (2.13)

are shown for three different values of a single squashing, i.e. A = −0.8 (blue), A = 0 (red) and

A = 2.06 (green). For large im̃2 we have Re(m2)→ −R/8.

where Λ is a cutoff that we use to regularize the UV divergences in this theory. The

eigenvalues of the operator in (2.11) can be found in closed analytic form [40],

λn,q = n2 +A(n− 1− 2q)2 − 1

4(1 +A)
+m2 , q = 0, 1, . . . , n− 1, n = 1, 2, . . . (2.12)

To regularize the infinite sum in (2.11) we follow [36, 37] and use a heat-kernel type

regularization. Using a heat-kernel the sum over eigenvalues divides in a UV and an IR

part. The latter converges and can readily be done numerically. By contrast the former

contains all the divergences and should be treated with care. We regularize this numerically

by verifying how the sum over high energy modes changes when we vary the energy cutoff.

From a numerical fit we then deduce its non-divergent part which we add to the sum over

the low energy modes to give the total renormalized free energy. The resulting determinant

after heat-kernel regularization captures all modes with energies lower than the cutoff Λ.

The contribution of modes with eigenvalues above the cutoff is exponentially small. For

more details on this procedure we refer to [36, 38].

To evaluate the holographic measure we must substitute our result for Zfree[A,m
2]

in (2.10) and compute the integral in a large N saddle point approximation. The factor

outside the path integral in (2.10) diverges in the large f limit. We cancel this by adding

the appropriate counterterms. The saddle point equation then becomes

2π2√
(1 +A)(1 +B)

(
m2

f
− m̃2

)
= −∂ logZfree[m

2]

∂m2
. (2.13)

We are interested in imaginary m̃2 as discussed above. This means we need Zfree[A,m
2]

for complex deformations m2. Numerically inverting (2.13) in the large f limit we find a

saddle point relation m2(m̃2). This is shown in figure 2, where the real and imaginary

parts of m2 are plotted as a function of im̃2 for three different values of A.

Notice that Re(m2) ≥ −R(A)/8. This reflects the fact that the determinant (2.11),

which is a product over all eigenvalues of the operator −∇2 +m2 +R/8, vanishes when the

operator has a zero eigenvalue. Since the lowest eigenvalue of the Laplacian ∇2 is always

zero, the first eigenvalue λ1 of the operator in (2.11) is zero when R/8 + m2 = 0. In the

– 7 –
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Figure 3. The holographic probability distribution in a dual toy model of eternal inflation as

a function of the coupling of the mass deformation m̃2 that is dual to the bulk scalar, and the

squashing A of the future boundary that parameterizes the amount of asymptotic anisotropy. The

distribution is smooth and normalizable over the entire configuration space and suppresses strongly

anisotropic future boundaries.

region of configuration space where the operator has one or more negative eigenvalues the

Gaussian integral (2.5) does not converge, and (2.11) does not apply. This in turn means

that the holographic measure Z−1crit[A, m̃
2] is zero on such boundary configurations, as we

now see.

Inserting the relation m2(m̃2) in (2.10) yields the partition function Zcrit[A, m̃
2]. We

show the resulting two-dimensional holographic measure in figure 3. The distribution

is well behaved and normalizable with a global maximum at zero squashing and zero

deformation corresponding to the pure de Sitter history, in agreement with the F-theorem

and its spin-2 extensions. When the scalar is turned on the local maximum shifts slightly

towards positive values of A. However the total probability of highly deformed boundary

geometries is exponentially small as anticipated.3 We illustrate this in figure 4 where we

plot two one-dimensional slices of the distribution for two different values of m̃2.

2.4 Global measure: general metric deformations

It is beyond the current state-of-the-art to evaluate partition functions, be it of vector

models or ABJM or duals to other models, for general large metric deformations. However,

the above calculation implies a general argument suggesting that the amplitude of large

deformations of the conformal boundary geometry is highly suppressed in the holographic

measure both in higher-spin and in Einstein gravity. This is because the action of any dual

CFT includes a conformal coupling term of the form Rφ2. For geometries that are close to

the round sphere this is positive and prevents the partition function from diverging. On

3The distribution has an exponentially small tail in the region of configuration space where the Ricci

scalar R(A) is negative and Zfree diverges. We attribute this to our saddle point approximation of (2.10).

– 8 –



J
H
E
P
0
4
(
2
0
1
8
)
1
4
7

0 5 10 15 20 25 30
A

0.5

1.0

1.5

2.0

1

Z 2

0 10 20 30 40
A

0.02

0.04

0.06

0.08

0.10

0.12

1

Z 2

Figure 4. Two slices of the probability distribution for m̃2 = 0.0 (left) and m̃2 = 0.05i (right).

the other hand the same argument suggests that the conformal coupling likely causes the

partition function to diverge on boundary geometries that are far from the round conformal

structure [41]. These include in particular geometries with patches of negative curvature

or, more accurately, a negative Yamabe invariant.

The Yamabe invariant Y (h̃) is a property of conformal classes. It is essentially the

infimum of the total scalar curvature in the conformal class of h̃, normalized with respect

to the overall volume. It is defined as

Y (h̃) ≡ infω I(ω1/4h̃) (2.14)

where the infimum is taken over conformal transformations ω(x) and I(ωh̃) is the normal-

ized average scalar curvature of ω1/4h̃,

I(ω1/4h̃) =

∫
M

(
ω2R(h̃) + 8(∂ω)2

)√
h̃ d3x(∫

M ω6
√
h̃ d3x

)1/3 . (2.15)

There always exists a conformal transformation ω(x) such that the metric h̃′ = ω1/4h̃ has

constant scalar curvature [42]. The infimum defining Y is obtained for this metric h̃′.

The Yamabe invariant is negative in conformal classes containing a metric of con-

stant R < 0. Since the lowest eigenvalue of the conformal Laplacian is negative on such

backgrounds one expects that the partition function of a CFT does not converge, thereby

strongly suppressing the amplitude of such conformal classes in the measure (1.1). This is

born out by the holographic measure specified by the partition function of the deformed

O(N) model on squashed spheres evaluated in section 2.3. There the probabilities of large

squashings for which R < 0 are exponentially small, which can be traced in the calculation

to the divergence of Zfree on such backgrounds.

Conformal classes with negative Y (h̃) precisely include the highly irregular constant

density surfaces featuring in a semiclassical gravity analysis of eternal inflation. This

general argument therefore suggests their amplitude will be low in a holographic measure.

We interpret this as evidence against the idea that eternal inflation typically leads to

– 9 –
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a highly irregular universe with a mosaic structure of bubble like patches separated by

inflationary domains.4 Instead we conjecture that the exit from eternal inflation produces

classical universes that are reasonably smooth on the largest scales.

3 Discussion

We have used gauge-gravity duality to describe the quantum dynamics of scalar field driven

eternal inflation in the no-boundary state in terms of a dual field theory defined on a global

constant density surface at the exit from (scalar field) eternal inflation. Working with the

semiclassical form (1.1) of dS/CFT the dual field theories involved are Euclidean AdS/CFT

duals deformed by a complex low dimension scalar operator sourced by the bulk scalar

driving eternal inflation.

The inverse of the partition function specifies the amplitude of different shapes of the

conformal boundary at the exit from scalar field eternal inflation. This yields a holographic

measure on the global structure of such eternally inflating universes. We have computed

this explicitly in a toy model consisting of a mass deformed interacting O(N) vector theory

defined on squashed spheres. In this model we find that the amplitude is low for geometries

far from the round conformal structure. Second, building on this result we have argued

on general grounds that exit surfaces with significant patches of negative scalar curvature

are strongly suppressed in a holographic measure in Einstein gravity too. Based on this

we conjecture that eternal inflation produces universes that are relatively regular on the

largest scales. This is radically different from the usual picture of eternal inflation arising

from a semiclassical gravity treatment.

We have considered toy model cosmologies in which a scalar field driven regime of eter-

nal inflation transitions directly to a Λ-dominated phase. The application of our ideas to

more realistic cosmologies that include a decelerating phase requires further development

of holographic cosmology (as is the case for all current applications of holographic tech-

niques to early universe cosmology, e.g. [15, 24–28]). It has been suggested that in realistic

cosmologies, inflation corresponds to an IR fixed point of the dual theory [24] in which case

the partition function of the IR theory might specify the amplitude of exit surfaces.

Our conjecture strengthens the intuition that holographic cosmology implies a signifi-

cant reduction of the multiverse to a much more limited set of possible universes. This has

important implications for anthropic reasoning. In a significantly constrained multiverse

discrete parameters are determined by the theory. Anthropic arguments apply only to a

subset of continuously varying parameters, such as the amount of slow roll inflation.

The dual Euclidean description of eternal inflation we put forward amounts to a sig-

nificant departure from the original no-boundary idea. In our description, histories with a

regime of eternal inflation have an inner boundary in the past, at the threshold for (scalar

field) eternal inflation. The field theory on this inner boundary gives an approximate de-

4This resonates with [13] where we argued that probabilities for local observations in eternal inflation can

be obtained by coarse-graining over the large-scale fluctuations associated with eternal inflation, thereby

effectively restoring smoothness. Our holographic analysis suggests that the dual description implements

some of this coarse-graining automatically.

– 10 –
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scription of the transition from the quantum realm of eternal inflation, to a universe in

the semiclassical domain. For simplicity we have assumed a sharp inner boundary, but of

course one can imagine models where this is fuzzy. The detailed exit from eternal inflation

is encoded in the coupling between the field theory degrees of freedom on the exit surface

and the classical bulk dynamics.
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